A novel architecture to classify histopathology images using convolutional neural networks

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
3 Downloads (Pure)


Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients' treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.

Original languageEnglish
Article number2929
Pages (from-to)1-17
Number of pages17
JournalApplied Sciences (Switzerland)
Issue number8
Publication statusPublished - 23 Apr 2020


  • Convolutional neural networks
  • Deep learning
  • Histopathology images
  • Image classification


Dive into the research topics of 'A novel architecture to classify histopathology images using convolutional neural networks'. Together they form a unique fingerprint.

Cite this