TY - JOUR
T1 - A new hybrid multicarrier transmission technique with iterative frequency domain detection
AU - Fernandes, Telmo
AU - Pereira, Andreia
AU - Gomes, Marco
AU - Silva, Vitor
AU - Dinis, Rui
N1 - info:eu-repo/grantAgreement/FCT/5876/147328/PT#
sem pdf conforme despacho.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - The growing progress in wireless communication services led to a demand in high data rates, spectral efficiency and flexibility requirements. The Block-Windowed Burst Orthogonal Frequency Division Multiplexing (BWB-OFDM) technique has been recently proposed to face these demands. This technique employs smoother, non-rectangular windows, allowing a power spectral density similar to the filtered OFDM approach, thus achieving high spectral efficiency; also, it packs together several OFDM symbols, with the addition of a sole zero-padding to accommodate the multipath channel's propagation delay, thereby improving power efficiency. However, BWB-OFDM has the same drawbacks of OFDM when transmitting over hostile channel conditions, namely the performance degradation due to deep fades associated to severe frequency-selective channels. This paper proposes a new Time Interleaved BWB-OFDM (TIBWB-OFDM) technique that performs interleaving on the time-samples of each BWB-OFDM block, creating a kind of diversity effect at the frequency domain, granting a much better resilience against deep inband fades, while keeping all the mentioned advantages of BWB-OFDM at the cost of no added complexity. Also, by regarding TIBWB-OFDM as a hybrid technique combining single-carrier and multicarrier characteristics, this paper also proposes the use of non-linear frequency domain equalizers based on the Iterative Block Frequency Domain Equalization (IB-DFE) concept for TIBWB-OFDM detection. It is shown that noteworthy improvements can be achieved in bit error rate (BER) performance compared to conventional OFDM schemes when employing typical zero-forcing (ZF) and minimum mean-square error (MMSE) linear equalizers.
AB - The growing progress in wireless communication services led to a demand in high data rates, spectral efficiency and flexibility requirements. The Block-Windowed Burst Orthogonal Frequency Division Multiplexing (BWB-OFDM) technique has been recently proposed to face these demands. This technique employs smoother, non-rectangular windows, allowing a power spectral density similar to the filtered OFDM approach, thus achieving high spectral efficiency; also, it packs together several OFDM symbols, with the addition of a sole zero-padding to accommodate the multipath channel's propagation delay, thereby improving power efficiency. However, BWB-OFDM has the same drawbacks of OFDM when transmitting over hostile channel conditions, namely the performance degradation due to deep fades associated to severe frequency-selective channels. This paper proposes a new Time Interleaved BWB-OFDM (TIBWB-OFDM) technique that performs interleaving on the time-samples of each BWB-OFDM block, creating a kind of diversity effect at the frequency domain, granting a much better resilience against deep inband fades, while keeping all the mentioned advantages of BWB-OFDM at the cost of no added complexity. Also, by regarding TIBWB-OFDM as a hybrid technique combining single-carrier and multicarrier characteristics, this paper also proposes the use of non-linear frequency domain equalizers based on the Iterative Block Frequency Domain Equalization (IB-DFE) concept for TIBWB-OFDM detection. It is shown that noteworthy improvements can be achieved in bit error rate (BER) performance compared to conventional OFDM schemes when employing typical zero-forcing (ZF) and minimum mean-square error (MMSE) linear equalizers.
KW - Filtered OFDM
KW - Iterative-block frequency domain equalization
KW - Multicarrier systems
KW - OFDM
KW - Power and spectral efficiency
KW - Time-interleaving
UR - http://www.scopus.com/inward/record.url?scp=85040310496&partnerID=8YFLogxK
U2 - 10.1016/j.phycom.2017.12.014
DO - 10.1016/j.phycom.2017.12.014
M3 - Article
AN - SCOPUS:85040310496
SN - 1874-4907
VL - 27
SP - 7
EP - 16
JO - Physical Communication
JF - Physical Communication
ER -