TY - JOUR
T1 - A LCA and LCC analysis of pure subtractive manufacturing, wire arc additive manufacturing, and selective laser melting approaches
AU - Kokare, Samruddha
AU - Oliveira, J. P.
AU - Godina, Radu
N1 - info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00667%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00667%2F2020/PT#
Funding Information:
João Pedro Oliveira acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, I.P., in the scope of the projects LA/P/0037/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. This activity has received funding from the European Institute of Innovation and Technology (EIT) – Project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 - Research and Innovation Framework Programme.
Publisher Copyright:
© 2023 The Authors
PY - 2023/9/8
Y1 - 2023/9/8
N2 - The development of sustainable manufacturing solutions is gaining attention in the manufacturing sector due to increased awareness about climate change and the formulation of stricter environmental legislation. Sustainable manufacturing involves the development of solutions that are environmentally friendly and cost-effective at the same time. Considering the opportunities and limitations of metal subtractive and additive manufacturing approaches from a sustainability perspective, this study aims to compare the environmental impact and production costs associated with the manufacture of a marine propeller using pure subtractive CNC milling along with additive Wire arc additive manufacturing (WAAM) and Selective Laser Melting (SLM) approaches. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) are used to quantify the environmental and economic impacts, respectively for each manufacturing approach. Based on the LCA and LCC models formulated, and the input data collected, the WAAM approach is observed to be the most environmentally and cost-efficient approach for the marine propeller analyzed. WAAM shows an environmental impact about 2.5 times and 3.4 times lower than pure CNC milling and SLM approaches, respectively mainly due to its better material and energy efficiencies. The effect of key variables on the environmental impact and production cost such as raw material, electricity, and post-processing parameters like a material allowance for finish machining and cutting velocity is also studied to suggest the parameters ensuring sustainable performance for a particular approach. WAAM is seen to be the most economical and ecological option for a post-processing material allowance under 4 mm and the finish machining velocities below 96 m/min. Additionally, an uncertainty assessment using the Monte Carlo analysis method is also performed to give a probabilistic range of environmental impacts and production costs considering the input data uncertainties for each approach. The methodology used in this study can be applied to other additive manufacturing processes. This study can be of potential help to AM practitioners in decision-making on selecting the most sustainable approach for manufacturing their products.
AB - The development of sustainable manufacturing solutions is gaining attention in the manufacturing sector due to increased awareness about climate change and the formulation of stricter environmental legislation. Sustainable manufacturing involves the development of solutions that are environmentally friendly and cost-effective at the same time. Considering the opportunities and limitations of metal subtractive and additive manufacturing approaches from a sustainability perspective, this study aims to compare the environmental impact and production costs associated with the manufacture of a marine propeller using pure subtractive CNC milling along with additive Wire arc additive manufacturing (WAAM) and Selective Laser Melting (SLM) approaches. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) are used to quantify the environmental and economic impacts, respectively for each manufacturing approach. Based on the LCA and LCC models formulated, and the input data collected, the WAAM approach is observed to be the most environmentally and cost-efficient approach for the marine propeller analyzed. WAAM shows an environmental impact about 2.5 times and 3.4 times lower than pure CNC milling and SLM approaches, respectively mainly due to its better material and energy efficiencies. The effect of key variables on the environmental impact and production cost such as raw material, electricity, and post-processing parameters like a material allowance for finish machining and cutting velocity is also studied to suggest the parameters ensuring sustainable performance for a particular approach. WAAM is seen to be the most economical and ecological option for a post-processing material allowance under 4 mm and the finish machining velocities below 96 m/min. Additionally, an uncertainty assessment using the Monte Carlo analysis method is also performed to give a probabilistic range of environmental impacts and production costs considering the input data uncertainties for each approach. The methodology used in this study can be applied to other additive manufacturing processes. This study can be of potential help to AM practitioners in decision-making on selecting the most sustainable approach for manufacturing their products.
KW - CNC milling
KW - Life cycle assessment
KW - Life cycle costing
KW - Selective laser melting
KW - Sustainable manufacturing
KW - Wire arc additive manufacturing
UR - http://www.scopus.com/inward/record.url?scp=85161502329&partnerID=8YFLogxK
U2 - 10.1016/j.jmapro.2023.05.102
DO - 10.1016/j.jmapro.2023.05.102
M3 - Review article
AN - SCOPUS:85161502329
SN - 1526-6125
VL - 101
SP - 67
EP - 85
JO - Journal of Manufacturing Processes
JF - Journal of Manufacturing Processes
ER -