A Lagrangean Heuristic for a Modular Capacitated Location Problem

Isabel Correia, M. Eugénia Captivo

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

This paper considers the Modular Capacitated Location Problem (MCLP) which consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. Each customer has an associated demand and the capacity of each potential location must be chosen from a finite and discrete set of available capacities. Practical applications of this problem can be found in the location of warehouses, schools, health care services or other types of public services. For the MCLP different mixed integer linear programming models are proposed. The authors develop upper and lower bounds on the problem's optimal value and present computational results with randomly generated tests problems.

Original languageEnglish
Pages (from-to)141-161
Number of pages21
JournalAnnals Of Operations Research
Volume122
Issue number1-4
DOIs
Publication statusPublished - 1 Sep 2003

Fingerprint

Location problem
Heuristics
Health care services
Upper bound
Lower bounds
Warehouse
Mixed integer linear programming
Public services
Costs

Keywords

  • Capacitated location
  • Lagrangean heuristic
  • Mixed integer linear programming

Cite this

Correia, Isabel ; Captivo, M. Eugénia. / A Lagrangean Heuristic for a Modular Capacitated Location Problem. In: Annals Of Operations Research. 2003 ; Vol. 122, No. 1-4. pp. 141-161.
@article{9c5195c72f564eada0d6c0d2a2ad1195,
title = "A Lagrangean Heuristic for a Modular Capacitated Location Problem",
abstract = "This paper considers the Modular Capacitated Location Problem (MCLP) which consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. Each customer has an associated demand and the capacity of each potential location must be chosen from a finite and discrete set of available capacities. Practical applications of this problem can be found in the location of warehouses, schools, health care services or other types of public services. For the MCLP different mixed integer linear programming models are proposed. The authors develop upper and lower bounds on the problem's optimal value and present computational results with randomly generated tests problems.",
keywords = "Capacitated location, Lagrangean heuristic, Mixed integer linear programming",
author = "Isabel Correia and Captivo, {M. Eug{\'e}nia}",
year = "2003",
month = "9",
day = "1",
doi = "10.1023/A:1026146507143",
language = "English",
volume = "122",
pages = "141--161",
journal = "Annals Of Operations Research",
issn = "0254-5330",
publisher = "Springer Science Business Media",
number = "1-4",

}

A Lagrangean Heuristic for a Modular Capacitated Location Problem. / Correia, Isabel; Captivo, M. Eugénia.

In: Annals Of Operations Research, Vol. 122, No. 1-4, 01.09.2003, p. 141-161.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A Lagrangean Heuristic for a Modular Capacitated Location Problem

AU - Correia, Isabel

AU - Captivo, M. Eugénia

PY - 2003/9/1

Y1 - 2003/9/1

N2 - This paper considers the Modular Capacitated Location Problem (MCLP) which consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. Each customer has an associated demand and the capacity of each potential location must be chosen from a finite and discrete set of available capacities. Practical applications of this problem can be found in the location of warehouses, schools, health care services or other types of public services. For the MCLP different mixed integer linear programming models are proposed. The authors develop upper and lower bounds on the problem's optimal value and present computational results with randomly generated tests problems.

AB - This paper considers the Modular Capacitated Location Problem (MCLP) which consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. Each customer has an associated demand and the capacity of each potential location must be chosen from a finite and discrete set of available capacities. Practical applications of this problem can be found in the location of warehouses, schools, health care services or other types of public services. For the MCLP different mixed integer linear programming models are proposed. The authors develop upper and lower bounds on the problem's optimal value and present computational results with randomly generated tests problems.

KW - Capacitated location

KW - Lagrangean heuristic

KW - Mixed integer linear programming

UR - http://www.scopus.com/inward/record.url?scp=0345865107&partnerID=8YFLogxK

U2 - 10.1023/A:1026146507143

DO - 10.1023/A:1026146507143

M3 - Article

VL - 122

SP - 141

EP - 161

JO - Annals Of Operations Research

JF - Annals Of Operations Research

SN - 0254-5330

IS - 1-4

ER -