Abstract
In this paper, a new geometrically exact beam formulation is presented, aiming at calculating buckling (bifurcation) loads of Euler-Bernoulli/Vlasov thin-walled beams with deformable cross-section. The resulting finite element is particularly efficient for problems involving coupling between lateral-torsional buckling and cross-section distortion/local-plate buckling. The kinematic description of the beam is geometrically exact and employs rotation tensors associated with both cross-section rotation and the relative rotations of the cross-section walls in the cross-section plane. Moreover, arbitrary deformation modes, complying with Kirchhoff's assumption, are also included, which makes it possible to capture local/distortional/global buckling phenomena. Load height effects associated with cross-section rotation/deformation are also included. The examples presented throughout the paper show that the proposed beam finite element leads to accurate solutions with a relatively small number of degrees-of-freedom (deformation modes and finite elements). (C) 2012 Elsevier Ltd. All rights reserved.
Original language | Unknown |
---|---|
Pages (from-to) | 9-19 |
Journal | Computers & Structures |
Volume | 106-107 |
Issue number | NA |
DOIs | |
Publication status | Published - 1 Jan 2012 |