TY - JOUR
T1 - A genetic algorithm approach to design job rotation schedules ensuring homogeneity and diversity of exposure in the automotive industry
AU - Assunção, Ana
AU - Mollaei, Nafiseh
AU - Rodrigues, João
AU - Fujão, Carlos
AU - Osório, Daniel
AU - Veloso, António P.
AU - Gamboa, Hugo
AU - Carnide, Filomena
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBDE%2F102750%2F2014/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00447%2F2020/PT#
info:eu-repo/grantAgreement/FCT/OE/PD%2FBDE%2F142816%2F2018/PT#
info:eu-repo/grantAgreement/FCT/OE/PD%2FBDE%2F142973%2F2018/PT#
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/5
Y1 - 2022/5
N2 - Job rotation is a work organization strategy with increasing popularity, given its benefits for workers and companies, especially those working with manufacturing. This study proposes a formulation to help the team leader in an assembly line of the automotive industry to achieve job rotation schedules based on three major criteria: improve diversity, ensure homogeneity, and thus reduce exposure level. The formulation relied on a genetic algorithm, that took into consideration the biomechanical risk factors (EAWS), workers’ qualifications, and the organizational aspects of the assembly line. Moreover, the job rotation plan formulated by the genetic algorithm formulation was compared with the solution provided by the team leader in a real life-environment. The formulation proved to be a reliable solution to design job rotation plans for increasing diversity, decreasing exposure, and balancing homogeneity within workers, achieving better results in all of the outcomes when compared with the job rotation schedules created by the team leader. Additionally, this solution was less time-consuming for the team leader than a manual implementation. This study provides a much-needed solution to the job rotation issue in the manufacturing industry, with the genetic algorithm taking less time and showing better results than the job rotations created by the team leaders.
AB - Job rotation is a work organization strategy with increasing popularity, given its benefits for workers and companies, especially those working with manufacturing. This study proposes a formulation to help the team leader in an assembly line of the automotive industry to achieve job rotation schedules based on three major criteria: improve diversity, ensure homogeneity, and thus reduce exposure level. The formulation relied on a genetic algorithm, that took into consideration the biomechanical risk factors (EAWS), workers’ qualifications, and the organizational aspects of the assembly line. Moreover, the job rotation plan formulated by the genetic algorithm formulation was compared with the solution provided by the team leader in a real life-environment. The formulation proved to be a reliable solution to design job rotation plans for increasing diversity, decreasing exposure, and balancing homogeneity within workers, achieving better results in all of the outcomes when compared with the job rotation schedules created by the team leader. Additionally, this solution was less time-consuming for the team leader than a manual implementation. This study provides a much-needed solution to the job rotation issue in the manufacturing industry, with the genetic algorithm taking less time and showing better results than the job rotations created by the team leaders.
KW - Automotive industry
KW - Genetic algorithm
KW - Musculoskeletal disorders
KW - Occupational risk factors
KW - Prevention approach
KW - Workplace intervention
UR - http://www.scopus.com/inward/record.url?scp=85130383124&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2022.e09396
DO - 10.1016/j.heliyon.2022.e09396
M3 - Article
C2 - 35607496
AN - SCOPUS:85130383124
SN - 2405-8440
VL - 8
JO - Heliyon
JF - Heliyon
IS - 5
M1 - e09396
ER -