TY - JOUR
T1 - A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applications
AU - Matias, Maria Leonor
AU - Carlos, Emanuel
AU - Branquinho, Rita
AU - do Valle, Hadassa
AU - Marcelino, João
AU - Morais, Maria
AU - Pimentel, Ana
AU - Rodrigues, Joana
AU - Monteiro, Teresa
AU - Fortunato, Elvira
AU - Martins, Rodrigo
AU - Nunes, Daniela
N1 - info:eu-repo/grantAgreement/FCT/OE/UI%2FBD%2F151292%2F2021/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0037%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND4ed/2021.03825.CEECIND%2FCP1657%2FCT0015/PT#
info:eu-repo/grantAgreement/EC/H2020/952169/EU#
info:eu-repo/grantAgreement/EC/H2020/101008701/EU#
info:eu-repo/grantAgreement/EC/H2020/787410/EU#
Funding Information:
The work was also partially funded by the Nanomark collaborative project between INCM (Imprensa Nacional-Casa da Moeda) and CENIMAT/i3N.
Publisher Copyright:
© 2022 by the authors.
PY - 2022/9/3
Y1 - 2022/9/3
N2 - The present study is focused on the synthesis of zirconium dioxide (ZrO2) nanomaterials using the hydrothermal method assisted by microwave irradiation and solution combustion synthesis. Both synthesis techniques resulted in ZrO2 powders with a mixture of tetragonal and monoclinic phases. For microwave synthesis, a further calcination treatment at 800 °C for 15 min was carried out to produce nanopowders with a dominant monoclinic ZrO2 phase, as attested by X-ray diffraction (XRD) and Raman spectroscopy. The thermal behavior of the ZrO2 nanopowder was investigated by in situ XRD measurements. From the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, the presence of near spherical nanoparticles was clear, and TEM confirmed the ZrO2 phases that comprised the calcinated nanopowders, which include a residual tetragonal phase. The optical properties of these ZrO2 nanopowders were assessed through photoluminescence (PL) and PL excitation (PLE) at room temperature (RT), revealing the presence of a broad emission band peaked in the visible spectral region, which suffers a redshift in its peak position, as well as intensity enhancement, after the calcination treatment. The powder resultant from the solution combustion synthesis was composed of plate-like structures with a micrometer size; however, ZrO2 nanoparticles with different shapes were also observed. Thin films were also produced by solution combustion synthesis and deposited on silicon substrates to produce energy storage devices, i.e., ZrO2 capacitors. The capacitors that were prepared from a 0.2 M zirconium nitrate-based precursor solution in 2-methoxyethanol and annealed at 350 °C exhibited an average dielectric constant (κ) of 11 ± 0.5 and low leakage current density of 3.9 ± 1.1 × 10−7 A/cm2 at 1 MV/cm. This study demonstrates the simple and cost-effective aspects of both synthesis routes to produce ZrO2 nanomaterials that can be applied to energy storage devices, such as capacitors.
AB - The present study is focused on the synthesis of zirconium dioxide (ZrO2) nanomaterials using the hydrothermal method assisted by microwave irradiation and solution combustion synthesis. Both synthesis techniques resulted in ZrO2 powders with a mixture of tetragonal and monoclinic phases. For microwave synthesis, a further calcination treatment at 800 °C for 15 min was carried out to produce nanopowders with a dominant monoclinic ZrO2 phase, as attested by X-ray diffraction (XRD) and Raman spectroscopy. The thermal behavior of the ZrO2 nanopowder was investigated by in situ XRD measurements. From the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, the presence of near spherical nanoparticles was clear, and TEM confirmed the ZrO2 phases that comprised the calcinated nanopowders, which include a residual tetragonal phase. The optical properties of these ZrO2 nanopowders were assessed through photoluminescence (PL) and PL excitation (PLE) at room temperature (RT), revealing the presence of a broad emission band peaked in the visible spectral region, which suffers a redshift in its peak position, as well as intensity enhancement, after the calcination treatment. The powder resultant from the solution combustion synthesis was composed of plate-like structures with a micrometer size; however, ZrO2 nanoparticles with different shapes were also observed. Thin films were also produced by solution combustion synthesis and deposited on silicon substrates to produce energy storage devices, i.e., ZrO2 capacitors. The capacitors that were prepared from a 0.2 M zirconium nitrate-based precursor solution in 2-methoxyethanol and annealed at 350 °C exhibited an average dielectric constant (κ) of 11 ± 0.5 and low leakage current density of 3.9 ± 1.1 × 10−7 A/cm2 at 1 MV/cm. This study demonstrates the simple and cost-effective aspects of both synthesis routes to produce ZrO2 nanomaterials that can be applied to energy storage devices, such as capacitors.
KW - energy storage devices
KW - microwave irradiation
KW - nanomaterials
KW - solution combustion
KW - ZrO
UR - http://www.scopus.com/inward/record.url?scp=85138004535&partnerID=8YFLogxK
U2 - 10.3390/en15176452
DO - 10.3390/en15176452
M3 - Article
AN - SCOPUS:85138004535
SN - 1996-1073
VL - 15
JO - Energies
JF - Energies
IS - 17
M1 - 6452
ER -