Abstract
We present four new parallel and distributed particle swarm optimization methods consisting in a genetic algorithm whose individuals are co-evolving swarms, an "island model"-based multi-swarm system, where swarms are independent and interact by means of particle migrations at regular time steps, and their respective variants enriched by adding a repulsive component to the particles. We study the proposed methods on a wide set of problems including theoretically hand-tailored benchmarks and complex real-life applications from the field of drug discovery, with a particular focus on the generalization ability of the obtained solutions. We show that the proposed repulsive multi-swarm system has a better optimization ability than all the other presented methods on all the studied problems. Interestingly, the proposed repulsive multi-swarm system is also the one that returns the most general solutions.
Original language | Unknown |
---|---|
Pages (from-to) | 129-161 |
Journal | New Generation Computing |
Volume | 29 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jan 2011 |