TY - JOUR
T1 - A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages
AU - Szymczak, Paula
AU - Rau, Martin Holm
AU - Monteiro, João M.
AU - Pinho, Mariana G.
AU - Filipe, Sérgio Raposo
AU - Vogensen, Finn Kvist
AU - Zeidan, Ahmad A.
AU - Janzen, Thomas
N1 - The authors would like to thank: Mimi Birkelund, Ditte E. Christiansen, Goncalo Covas, and Denise Coutinho for their help in collecting data; Ana Rute Neves for valuable discussions; Witold Kot and Lars H. Hansen for sequencing of phage genomes at Aarhus University (Roskilde, Denmark). This work is part of an Industrial PhD Project funded by Innovation Fund Denmark and Chr. Hansen A/S, grant no. 4135-00104B.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S. thermophilus phages to identify genetic determinants with a signature for host specificity, which could be linked to the bacterial receptor genotype. A comparative genomic analysis was performed on 142 S. thermophilus phage genomes, 55 of which were sequenced in this study. Effectively, 94 phages were assigned to the group cos (DT1), 36 to the group pac (O1205), six to the group 5093, and six to the group 987. The core genome-based phylogeny of phages from the two dominating groups and their receptor binding protein (RBP) phylogeny corresponded to the phage host-range. A role of RBP in host recognition was confirmed by constructing a fluorescent derivative of the RBP of phage CHPC951, followed by studying the binding of the protein to the host strain. Furthermore, the RBP phylogeny of the cos group was found to correlate with the host genotype of the exocellular polysaccharide-encoding operon. These findings provide novel insights towards developing strategies to combat phage infections in dairies.
AB - Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S. thermophilus phages to identify genetic determinants with a signature for host specificity, which could be linked to the bacterial receptor genotype. A comparative genomic analysis was performed on 142 S. thermophilus phage genomes, 55 of which were sequenced in this study. Effectively, 94 phages were assigned to the group cos (DT1), 36 to the group pac (O1205), six to the group 5093, and six to the group 987. The core genome-based phylogeny of phages from the two dominating groups and their receptor binding protein (RBP) phylogeny corresponded to the phage host-range. A role of RBP in host recognition was confirmed by constructing a fluorescent derivative of the RBP of phage CHPC951, followed by studying the binding of the protein to the host strain. Furthermore, the RBP phylogeny of the cos group was found to correlate with the host genotype of the exocellular polysaccharide-encoding operon. These findings provide novel insights towards developing strategies to combat phage infections in dairies.
UR - http://www.scopus.com/inward/record.url?scp=85067080364&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-44481-z
DO - 10.1038/s41598-019-44481-z
M3 - Article
C2 - 31142793
AN - SCOPUS:85067080364
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 7991
ER -